Generation of ultra-short hydrogen atom pulses by bunch-compression photolysis.
نویسندگان
چکیده
Ultra-short light pulses enable many time-resolved studies in chemistry, especially when used in pump-probe experiments. However, most chemical events are not initiated by light, but rather by collisions. Time-resolved collisional experiments require ultra-short pulses of atoms and molecules--sadly, methods for producing such pulses are so far unknown. Here we introduce bunch-compression photolysis, an approach to forming ultra-short and highly intense pulses of neutral atoms. We demonstrate H-atom pulses of 1.2±0.3 ns duration, far shorter than any previously reported. Owing to its extraordinarily simple physical principles, we can accurately model the method--the model shows H-atom pulses as short as 110-ps are achievable. Importantly, due to the bunch-compression, large (mm(3)) photolysis volumes are possible, a key advantage for pulse intensity. This technique overcomes the most challenging barrier to a new class of experiments on time-resolved collisions involving atoms and molecules.
منابع مشابه
LUX - A Recirculating Linac-based Ultrafast X-ray Source
We describe the design of a proposed source of ultra-fast synchrotron radiation x-ray pulses based on a recirculating superconducting linac, with an integrated array of ultrafast laser systems. The source produces x-ray pulses with duration of 10-50 fs at a 10 kHz repetition rate, with tunability from EUV to hard x-ray regimes, and optimized for the study of ultra-fast dynamics. A high-brightne...
متن کاملOptical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings
Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...
متن کاملGeneration of attosecond x-ray pulses beyond the atomic unit of time using laser induced microbunching in electron beams∗
Ever since the discovery of mode-locking, efforts have been devoted to reducing the duration of laser pulses since the ultrashort pulses are critical to explore the dynamics occurred on a ever-shorter timescale. In this paper we describe a scheme that’s capable of generating intense attosecond x-ray pulses with duration beyond the atomic unit of time (∼24 attoseconds). The scheme combines the e...
متن کاملBunch Compression for a Short-Pulse Mode in Cornell’s ERL
The production of ultra-short x-rays in Cornell’s Energy Recovery Linac (ERL) requires electron bunch lengths of less than 100fs with minimal transverse emittance growth and energy spread. Because the linac consists of two sections separated by an arc, CSR forces limit the bunch length in the linac, and bunch compression has to be done after acceleration. Creation of such short bunches requires...
متن کاملGeneration of high-order harmonics with ultra-short pulses from filamentation.
7-fs-pulses with 0.3 mJ are obtained after filamentation in argon and compression by double-chirped-mirrors. These pulses are used to generate high-order harmonics in a semi-infinite gas cell in different noble gases. Spectral broadening of high-order harmonics in xenon and argon is observed. In neon, an extended continuous cut-off region down to 10 nm (124 eV) is observed which is to the best ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 5 شماره
صفحات -
تاریخ انتشار 2014